If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2-50=0
a = 5; b = 0; c = -50;
Δ = b2-4ac
Δ = 02-4·5·(-50)
Δ = 1000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1000}=\sqrt{100*10}=\sqrt{100}*\sqrt{10}=10\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10\sqrt{10}}{2*5}=\frac{0-10\sqrt{10}}{10} =-\frac{10\sqrt{10}}{10} =-\sqrt{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10\sqrt{10}}{2*5}=\frac{0+10\sqrt{10}}{10} =\frac{10\sqrt{10}}{10} =\sqrt{10} $
| x+1.5x+2x=17000 | | F(x+3)=2x+5 | | ×/3+y/2=4/3 | | −4.5=−0.5*(x−7.1) | | y’-4-y^2=0 | | 7^2+a^2=10^2 | | F(x)=x-14 | | 10+15=-5(6x-5) | | 3x+13=6x+28 | | (2(z-8))/(12)=(3)/(2) | | C+7d=13 | | 51.25=6s+4.99 | | 5/x-3=25/x+9 | | 3/4x=8/16 | | (40*40)+(9*9)=x^2 | | -12=-(x)/(3)-10 | | 2y5=4 | | 1/6y-3=-9 | | 1=d/60+d/40 | | 2(x+4)=12x+8-10x | | 2(x-1)=3-(x-7) | | (2x+1^2)-(x+1^7)=1 | | 2.75/11=x/9 | | x=18+4x-14 | | a^2-14=-45 | | 94=x+4 | | x2+13x=−40 | | (6+y)(3y+1)=0 | | 8(4x+3)=32x-5 | | 8x-50+9x=180 | | 5x-3(x-4)=-8+4x+6 | | 5^(6x-6)=44 |