If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2-5x-1=0
a = 5; b = -5; c = -1;
Δ = b2-4ac
Δ = -52-4·5·(-1)
Δ = 45
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{45}=\sqrt{9*5}=\sqrt{9}*\sqrt{5}=3\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-3\sqrt{5}}{2*5}=\frac{5-3\sqrt{5}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+3\sqrt{5}}{2*5}=\frac{5+3\sqrt{5}}{10} $
| 5(3.9z-4.7)=35 | | 11x+9=-6+26 | | x2+1.5x-3=0 | | y3−9y2+y−9= | | x2+3/2x-3=0 | | 8(9+3y)=0 | | 2q2+14q-5=0 | | x2+8x=-7 | | 5t-7=2t+5 | | x2+20x+97.5=0 | | 5x-33-x=3+33-x | | 20(b-9)=-60 | | x2+12x+36=-25 | | x(x+8)=-4x^2-9 | | 16p2+24p+9=27 | | 0=17+8(3+x) | | 3/5v-1/4=3/5-3/4 | | 3x+x=10+2 | | x2-2x+1=64 | | 15+0.10x=0.25x | | Y^3-3y^2+5y=5 | | x+3/x-9=0 | | 2x/3+x=14 | | 5/x=3x1/3 | | −5+2(x+5)=−5 | | x/x+4+5/x+4=2 | | 25x2-81=0 | | 14x+-41+5x-12+2x+9=180 | | (3/4)c−(1/4)c+3=7 | | 5w-13=9(w-1) | | x*(4x-27)=7 | | 0.25x-0.6=0.16 |