If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2-6x-3=0
a = 5; b = -6; c = -3;
Δ = b2-4ac
Δ = -62-4·5·(-3)
Δ = 96
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{96}=\sqrt{16*6}=\sqrt{16}*\sqrt{6}=4\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-4\sqrt{6}}{2*5}=\frac{6-4\sqrt{6}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+4\sqrt{6}}{2*5}=\frac{6+4\sqrt{6}}{10} $
| z/10+4=1 | | 5x=10=40 | | 10f+30=15f+50 | | 6x-(3x+5)=4x-20 | | 29=x/2+7 | | −14=14x | | 3(x+5)+7x=25 | | x|6+3=9 | | (−2−5x)+(−2)=18 | | -6(-7+x)=-6 | | 8x+6=13x+5-5x+1 | | 2x(x-3)=6x2^-7x | | x^2(x-2)/(x-5)(x+9)^5=0 | | |9c|-25=21 | | 10m+6=66 | | -36+8x=4(5x+6) | | y=19+209 | | 2(x+5)-(x-2)=-14 | | 5-(2x-5)=30 | | 5+2y=-13+3y-y | | t+10=7t–14 | | |2/r+18|=19 | | 4x-4(3x-2)=15 | | s/3+12=62 | | (1/8)y+(2/3)=(1/6)y+(3/4) | | -20+2x=2(2x-2) | | 2x^2-12x-70=0 | | 2x+10-8x=34 | | 90=(3x+16)+(2x+14) | | 2x-4=3x-19 | | 5z/3+3=-2 | | 3=(x+1)/(x-2) |