If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2-70=0
a = 5; b = 0; c = -70;
Δ = b2-4ac
Δ = 02-4·5·(-70)
Δ = 1400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1400}=\sqrt{100*14}=\sqrt{100}*\sqrt{14}=10\sqrt{14}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10\sqrt{14}}{2*5}=\frac{0-10\sqrt{14}}{10} =-\frac{10\sqrt{14}}{10} =-\sqrt{14} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10\sqrt{14}}{2*5}=\frac{0+10\sqrt{14}}{10} =\frac{10\sqrt{14}}{10} =\sqrt{14} $
| 6x(12x)=9(8) | | 2{x+7}=x+17 | | 2w+30=-6(w+3) | | f-8=0.8 | | 2.3a+8.6=16.3 | | 4x-27=-75 | | 3=b/3 | | 6m-13=35 | | 15x2-44x+32=0 | | 101-5x=10x-124 | | 5n^2+19n−68=−2 | | n-3n=4n | | -2.7=3(a+3.2 | | 5x-8-2x=16 | | -36=3(x-7 | | 72=2x-3(3x+4) | | 7x+14=8x-4 | | X^2+17x+72.25=20.25 | | 4u-5=-7 | | 123=3(5x+11) | | 62x+5=11 | | 7=3x^2-32x+76 | | V=(8-2x)(10-2x)(x) | | 12x-34=62 | | 100x=7^6-x | | −4u−14=2(−2u−7) | | 12x-34=180 | | 1,074=18(x+6) | | 3x^2-32x-69=0 | | 3x-35=7x-15 | | 4x-2=8.7 | | 13x-16+10x=12-11x |