If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2-75-5x=0
a = 5; b = -5; c = -75;
Δ = b2-4ac
Δ = -52-4·5·(-75)
Δ = 1525
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1525}=\sqrt{25*61}=\sqrt{25}*\sqrt{61}=5\sqrt{61}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-5\sqrt{61}}{2*5}=\frac{5-5\sqrt{61}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+5\sqrt{61}}{2*5}=\frac{5+5\sqrt{61}}{10} $
| 35x-2=36x-1 | | 5k-1=3k+5 | | 3x+4=68 | | 11x+14=47 | | 0,075x=24 | | 101-20*x=11-2*x | | m+23=47 | | 9x-4(x-5)=3(x+2) | | 3x-5x-13+7x=17 | | 5x-0.8=2x+8.2 | | 5x-0.8=2x+8.3 | | (b+4)/2=-7 | | (b+4)/7=-7 | | 12d-84=8 | | 4(x+5)-3x+1)=3 | | 4(3x+7)=5(x+35) | | –15=10t–5t | | 8(x-16)=4(x+4) | | –15=10t–5t2 | | 430=0.6x | | 8x-16)=4(x+4) | | 4x+5(4x+5)=-23 | | -30-2x=-6-8x | | 750=0,35x+50 | | 75x+4=(75-1)x-7 | | 7u-24=41 | | x-3/75=2x | | 6u+39=14 | | 2p+6=3p-4 | | 12k=43 | | 80=(4y+8) | | 6=3t-3/5 |