If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2-7x-90=0
a = 5; b = -7; c = -90;
Δ = b2-4ac
Δ = -72-4·5·(-90)
Δ = 1849
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1849}=43$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-7)-43}{2*5}=\frac{-36}{10} =-3+3/5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-7)+43}{2*5}=\frac{50}{10} =5 $
| 5x+15=5x25 | | 1/4=8/4x-1/8 | | (√3x2)+12x+13=2x+5 | | -7=24h-3 | | 5c=2c | | 5(3^5x)=9 | | 4x*3=840 | | 9n=15 | | 5x=15x-5 | | 4x+2=-4x+7 | | 3(x+4)/2=15 | | 12(2x-(5+6))=3x+(6•7) | | 4(w+3)^2-81=0 | | 117=5x | | -x-2)x+1)=5(x-2) | | 13-8y+4y-12=15 | | 23=w/3-17 | | 4x+5-2x=15 | | 8(4r+3)=-104 | | 11k-7=2(4k+4) | | -19=3x-11 | | 2(x+3)^2=90 | | 2(x-5)-8=2x+18 | | 8x^2=32x-18 | | 6x+14=-3x-19 | | 4/z=10/5 | | 359+17x=2(19x+12)+2(10x-17) | | 7/3w+19=-2 | | {7-(5t-13)=-25}+2 | | 12t-19=89 | | 8(4K-6)=18-k | | -8+x/3=-1 |