If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2-8x+3=0
a = 5; b = -8; c = +3;
Δ = b2-4ac
Δ = -82-4·5·3
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4}=2$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-2}{2*5}=\frac{6}{10} =3/5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+2}{2*5}=\frac{10}{10} =1 $
| 9.2-b/7.5=-7.4 | | 71=3w+14 | | 2x^2+18x+304=0 | | y-3/4=481/2 | | 2v-12=6(v-8) | | 1. 3y–(y+5)=9 | | 3y-5y-2=0 | | 18b-12=3b-9 | | 6x2-8x=0 | | 0=x^2-230x+13000 | | 2x-4(x-5)=-9+2x+13 | | 1/10x^2-0.009=0 | | 72x÷x=3.6÷0.015 | | 7(y-3)-4(y+1)=-5(y+5) | | 3/4y+(300-y)=252.5 | | 14v-3(6-v)=8(v9) | | 3=-3(w+89) | | 3(y+4+5y)=y | | 9(d+1)=99 | | 5+(3x^2-7x-30)^(1/2)-(2x^2-7x-5)^(1/2)-x=0 | | q/3–1=1 | | -3+-2m=-19 | | 4+-3g=19 | | (3x^2-7x-30)^(1/2)-(2x^2-7x-5)^(1/2)-x+5=0 | | V5(V6x-4)=-2x | | 2x–7=4x+13 | | 2/15y-3/5=y+1/3y | | c/2+6=18.12 | | 3x+-1=-13 | | Y+4=1/3(4y+7) | | X^4-10x^2-18=0 | | 14(2x+6)/2=14(x+3) |