If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2-8x=0
a = 5; b = -8; c = 0;
Δ = b2-4ac
Δ = -82-4·5·0
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{64}=8$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-8}{2*5}=\frac{0}{10} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+8}{2*5}=\frac{16}{10} =1+3/5 $
| -7.4=2x-9 | | -13x+10=2x+70 | | Y=0.02x^2+9x | | 3(2x-10)=6(x10) | | 3z^2+13z-7=0 | | -20f+4=-2(-3+10f) | | (x+2)/2-3=1 | | x+54+x+100=138 | | 5(x-2)=3(×+4) | | 5(x-2)=3(×+4 | | -11d-21=-3(d+7)-8d | | 42+16x=20x-21 | | Y+8=-x+-4 | | 2.6(2z+5)=5(z+2.5) | | -2x^2+8=x^2-28 | | z/6.9=-3.2 | | -8=1/5z+2/5z | | Y=-3x+4(-2,5) | | 12(d+2)=4(d-6)+8d | | -8=1/5z= | | -8=1/5z | | 2(a-6)=4a(2a-12) | | x(2/5)=(3/20) | | 125a+678=16 | | 2x-6=-44 | | M+(2m+1)=91 | | 300=x(x-20) | | 2x-10=3x^2 | | -a+8=-25 | | 6m-8=3m+6m+1 | | 12x+24=12x+6 | | 3n-2+n=7n-15+4 |