If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2-9=41
We move all terms to the left:
5x^2-9-(41)=0
We add all the numbers together, and all the variables
5x^2-50=0
a = 5; b = 0; c = -50;
Δ = b2-4ac
Δ = 02-4·5·(-50)
Δ = 1000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1000}=\sqrt{100*10}=\sqrt{100}*\sqrt{10}=10\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10\sqrt{10}}{2*5}=\frac{0-10\sqrt{10}}{10} =-\frac{10\sqrt{10}}{10} =-\sqrt{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10\sqrt{10}}{2*5}=\frac{0+10\sqrt{10}}{10} =\frac{10\sqrt{10}}{10} =\sqrt{10} $
| -5z=12-4z^2 | | x/0.25x+0.1(x-3)=1.1 | | 0=-16t^2+28.7t+32.4 | | 4(m-3)=19m-6(m-7) | | 0.45x+0.05(10-x)=0.10(-19) | | 4x+19=45 | | 0.45x+0.05(8-x)=0.10(-52) | | a/3+1=5 | | 41(x+6)=8 | | -4(x+4)-x=2(x+4)-x | | 0.15+2x^2=0 | | -4(x+4)-x=x | | X+(x×.07)=49.65 | | -4(x+4)-x=4(x+2)-5x | | 4(3-x)+6x=3x+10-x-x | | -4(x+4)-x=x+8 | | x-12(12.17)=-210 | | x-6(12.16)=90 | | 6x+6=4(x-6) | | 6x+6=4(x-4) | | -210+12x=9-6x | | 20-7x=35-2x | | 2y+25+62+3y=-20y-3-10 | | 0=4x^2+12x+6 | | 0=12x^2+8x+12 | | 7(w-5)=-6w-22 | | -9u+25=-5(u-1)= | | 0=-2.78t^2+36t+2.4 | | 2(x+3)=x+15 | | -4(u-4)=2u+34 | | -7x+5(x+7)=17 | | 6(v-5)-8v=-34 |