If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2=1
We move all terms to the left:
5x^2-(1)=0
a = 5; b = 0; c = -1;
Δ = b2-4ac
Δ = 02-4·5·(-1)
Δ = 20
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{20}=\sqrt{4*5}=\sqrt{4}*\sqrt{5}=2\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{5}}{2*5}=\frac{0-2\sqrt{5}}{10} =-\frac{2\sqrt{5}}{10} =-\frac{\sqrt{5}}{5} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{5}}{2*5}=\frac{0+2\sqrt{5}}{10} =\frac{2\sqrt{5}}{10} =\frac{\sqrt{5}}{5} $
| 3+6=x-5-10 | | 7(x2+6)=42 | | 7(x2+6)=42 | | 8t−15=73 | | 6x2+17=11 | | x2=–100 | | –2x2=–168 | | 15x+-10=7x+14 | | 16c+2=c^2+c-2c | | 2x+3+3×=×11 | | 9x+x^2=x-4x+12-3x | | 0.8s+1=5 | | 3x+7x=49 | | x/10+4=4 | | 30−j=3 | | 2w–49=3w-89 | | 14x+12=20x | | 5+u=58 | | 7x+28=4x+7 | | 38°+90°+x=180° | | (2x+12)/(7)=(3x+5)/(4) | | 2x^2+3x-115=0 | | 4x+6=2*(2x+3) | | 10+3x+2(x-3)=28 | | 4^9x=16 | | -2^3x+1^4x=6.5 | | 4q−383=581 | | 9x-6x=2x+3 | | 99=10u+9 | | 8+9p=44 | | n4+ 10=11 | | 2(2w-55)=2(2w-96) |