If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2=20
We move all terms to the left:
5x^2-(20)=0
a = 5; b = 0; c = -20;
Δ = b2-4ac
Δ = 02-4·5·(-20)
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{400}=20$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-20}{2*5}=\frac{-20}{10} =-2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+20}{2*5}=\frac{20}{10} =2 $
| 18x-8=16x | | 3x–8=2x-12 | | 3(2-y)=y-10 | | 53x=371 | | 9x+4=5x(x+3) | | 2x+2=2437 | | (2x+3)x2=10 | | y=400+10 | | 3x+19/4=7 | | W^2-6w-4=12 | | x-0.10x=238718.21 | | -4b=14 | | 0.948805460751=(k/87.9) | | 2/3(5x-2)-(4x-1-3x/2)=5x-11/2 | | 1=u*2 | | M^2-10m-13=11 | | ×=5y-2=×-4y=1 | | 16h^2+8=16h+5 | | 2(‒3a+5)+4a=16 | | -.2(10x-15)=9 | | X^2+4x-14=-9 | | 16=-3x-15 | | 9x+9=8x-5 | | 12-5x=4+(4-x) | | 7c+6=20 | | (X-4)(y-5=0 | | 1+0,8x=2+0.75x | | 5p^2-10p+1.8=0 | | 12x^2+38x+27=0 | | x^2−10x+24=0 | | x4−2=5 | | 8x-5x=90 |