If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2=320
We move all terms to the left:
5x^2-(320)=0
a = 5; b = 0; c = -320;
Δ = b2-4ac
Δ = 02-4·5·(-320)
Δ = 6400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{6400}=80$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-80}{2*5}=\frac{-80}{10} =-8 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+80}{2*5}=\frac{80}{10} =8 $
| 7z-6z=7z-2-z | | 5x+4x=+36 | | x2-11=70 | | 12+3(4-2x)=-6 | | 3y-5(y-2)+2=8 | | x2-15=85 | | (2x+24=180 | | -25-2n=-3(n+6) | | -9=2/11a | | 5/6b=4 | | 8t+2)-3(t-4)=6 | | 8-10b=-9b | | 6(8x+6)=-64 | | 29=-4+w | | 1.1x+2(0.6x-2.7)=-10 | | 50–10=4m+4 | | 2/9y+1/8=1/9+5/3 | | 3x+5=1/2(6x+10) | | -2(x-5)+6x=6 | | (3x/5)+(10x-7)=180 | | -3b+12=-5b+6 | | (7x/4)+(41/30)=(4x/3)+(11/5) | | 2x+6/15+4x-8/4=15 | | x+28+x-28+x=170 | | 60=a–35 | | 5m2+8m=0 | | 475+75x=325+50 | | X+27+x=60 | | 4y-12=5y+51 | | -4.8z=-42 | | 110x-43=5x+1112 | | 12+2x=44-6x |