If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5y(2y-20)=0
We multiply parentheses
10y^2-100y=0
a = 10; b = -100; c = 0;
Δ = b2-4ac
Δ = -1002-4·10·0
Δ = 10000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{10000}=100$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-100)-100}{2*10}=\frac{0}{20} =0 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-100)+100}{2*10}=\frac{200}{20} =10 $
| -2(3-2x)-10=12 | | (-8.25x^2)+(66x)=8 | | 3x-7+4=-3 | | 7x-2-6x=1 | | 51/2+u=9/4 | | 2+4x-2=-8 | | y3+4=6 | | (-8.25x^2)+(66x)=0 | | -14+-3/5b=3 | | 2⁄5x+10=30 | | -5x-2)=27 | | 8e+14=9e+4 | | 3(5x+1)=39x+15 | | 5y-90=180 | | 6(7x)-8=118 | | 13+x=1+7x-3x | | 2x2-3x-9/8=0 | | p−10/4=2 | | x/0.75=16 | | 0.7298*x=125 | | 3=q+84 | | 4=x/3.75 | | 0.7298/x=125 | | −61+6x=-55 | | 63-5x-2=180 | | -15x+8=-4x+9 | | x-4.75=3.5 | | −3x−40=-49 | | 6.4+2.1(z-2)=6 | | 3(4x-8=36 | | 7b=4(40+30) | | 2x+4=-20+10x |