5y(6-2y)=-(19-18y)

Simple and best practice solution for 5y(6-2y)=-(19-18y) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5y(6-2y)=-(19-18y) equation:



5y(6-2y)=-(19-18y)
We move all terms to the left:
5y(6-2y)-(-(19-18y))=0
We add all the numbers together, and all the variables
5y(-2y+6)-(-(-18y+19))=0
We multiply parentheses
-10y^2+30y-(-(-18y+19))=0
We calculate terms in parentheses: -(-(-18y+19)), so:
-(-18y+19)
We get rid of parentheses
18y-19
Back to the equation:
-(18y-19)
We get rid of parentheses
-10y^2+30y-18y+19=0
We add all the numbers together, and all the variables
-10y^2+12y+19=0
a = -10; b = 12; c = +19;
Δ = b2-4ac
Δ = 122-4·(-10)·19
Δ = 904
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{904}=\sqrt{4*226}=\sqrt{4}*\sqrt{226}=2\sqrt{226}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-2\sqrt{226}}{2*-10}=\frac{-12-2\sqrt{226}}{-20} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+2\sqrt{226}}{2*-10}=\frac{-12+2\sqrt{226}}{-20} $

See similar equations:

| 2x+(x+9)×2=2×(x+1) | | 4x(x+8)=-24 | | x+6=71 | | -18+5x=12+2x | | 98-y=16 | | 7x/2-3x/4=21/3 | | 5b+6=41 | | 6-8x=-3x-9 | | 11x+8=7x-24 | | x+5=2(5x-3) | | 4x-10=6x+56 | | 2x+10=-4x-14 | | 11x+10=9x+20 | | 3x-1/2=x-4 | | 312-x=18 | | 10x+10=8x+4 | | 10-2=3a+a | | 7x-2.2=2x-2.2-3 | | (900+300x+25x2)=300+50x | | 2(3x-6)=3(5-x) | | 5x+24=15x+76 | | 10+7=4x+13 | | 7x-13=-21x+15 | | 7x-18=-21/4x+15 | | 7x-13=-21+15 | | 3=-3x+22 | | (y-1)(y^2+8y+16)=6(y+4) | | 4(3x-10)=6x-13 | | 10x-16=7+11 | | 10x-16=7x-11 | | 7c-5=19 | | x/x-5+3/x+2=7x/x^2-3x-10 |

Equations solver categories