If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5y(y+8)+2(y+1)=0
We multiply parentheses
5y^2+40y+2y+2=0
We add all the numbers together, and all the variables
5y^2+42y+2=0
a = 5; b = 42; c = +2;
Δ = b2-4ac
Δ = 422-4·5·2
Δ = 1724
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1724}=\sqrt{4*431}=\sqrt{4}*\sqrt{431}=2\sqrt{431}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(42)-2\sqrt{431}}{2*5}=\frac{-42-2\sqrt{431}}{10} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(42)+2\sqrt{431}}{2*5}=\frac{-42+2\sqrt{431}}{10} $
| 20p^2+44p-15=0 | | 4x-2/5=12x-20/5 | | 2=3d-8 | | 3^2x=3^x+30 | | 6^x+1=7776 | | x-8=- | | 7c-6=c | | 3^(2x+2)+17(3^x)-2=0 | | 3/4x+7/2/5x4=5/4 | | 7x12=N | | 2x-5x+8x=0 | | 3x=5x-(8/5) | | X-8+y=40 | | (-x)⁴=2,401 | | x+23=2x+-7 | | X^2-20x-3600=0 | | 308*15=x | | (3x2)x(12x3)= | | 11x+3=(2x+7) | | 20–17.5y+9y=3 | | (x+1)(x+2)(x+3)(x+4)-15=0 | | X^2-6x-11=4x | | 1,5x^2+4x-299=0 | | 6y^2+10y-16=0 | | 5p+4=31 | | 2×(4x-1)=15 | | 5x^2+49x-48=0 | | 5x^2+49x+48=0 | | 20x-2(x-5)=3(2x+19)- | | 0.25=(x/80000)*100 | | xx+9=15 | | 0.85x=x-150 |