5y+4(y-6)=4(y+2)-3

Simple and best practice solution for 5y+4(y-6)=4(y+2)-3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5y+4(y-6)=4(y+2)-3 equation:


Simplifying
5y + 4(y + -6) = 4(y + 2) + -3

Reorder the terms:
5y + 4(-6 + y) = 4(y + 2) + -3
5y + (-6 * 4 + y * 4) = 4(y + 2) + -3
5y + (-24 + 4y) = 4(y + 2) + -3

Reorder the terms:
-24 + 5y + 4y = 4(y + 2) + -3

Combine like terms: 5y + 4y = 9y
-24 + 9y = 4(y + 2) + -3

Reorder the terms:
-24 + 9y = 4(2 + y) + -3
-24 + 9y = (2 * 4 + y * 4) + -3
-24 + 9y = (8 + 4y) + -3

Reorder the terms:
-24 + 9y = 8 + -3 + 4y

Combine like terms: 8 + -3 = 5
-24 + 9y = 5 + 4y

Solving
-24 + 9y = 5 + 4y

Solving for variable 'y'.

Move all terms containing y to the left, all other terms to the right.

Add '-4y' to each side of the equation.
-24 + 9y + -4y = 5 + 4y + -4y

Combine like terms: 9y + -4y = 5y
-24 + 5y = 5 + 4y + -4y

Combine like terms: 4y + -4y = 0
-24 + 5y = 5 + 0
-24 + 5y = 5

Add '24' to each side of the equation.
-24 + 24 + 5y = 5 + 24

Combine like terms: -24 + 24 = 0
0 + 5y = 5 + 24
5y = 5 + 24

Combine like terms: 5 + 24 = 29
5y = 29

Divide each side by '5'.
y = 5.8

Simplifying
y = 5.8

See similar equations:

| 100(2+x)=500 | | 5*1-2w+8w=15 | | 0.8x+72=x | | 15x^5y^3+90x^5y^2-405x^5y= | | 3(2n-2)=(4n+9)+8 | | 0.8x+72= | | 5*1-2w+8w=1 | | 4(4x+8)+8=16x+40 | | X^4+2x-12=0 | | 12x^4y^3+24x^4y^2-420x^4y= | | 5x+3=5(x+8) | | -4-2(9z+3)=-5(5z-5)-3 | | 15x^2+5xy-20y^2= | | 2(x+5)=3(x-4) | | 5(x^2)+12x-44=0 | | k^2=6k | | 90x^4+2x^3-4x^2= | | s^2-26s+169=0 | | 4y+5/8=5y+7/8 | | -10x+3(4x-2)=6 | | 4st+14t-10s-35= | | 3x-4=2x-5 | | 7y+4(y-6)=4(y+2)-3 | | 2(6)+5= | | 8v=3 | | 46-(3c+4)=2(c+6)+c | | 40x^4-14x^3-6x^2= | | 0.50x+0.65(60)=0.25(98) | | x^2+4bx+13=0 | | x^2+4bx+13=y | | -5w=-25 | | 8x-6=28x+9 |

Equations solver categories