5y-2(y+5)=-(2y+15)+y

Simple and best practice solution for 5y-2(y+5)=-(2y+15)+y equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5y-2(y+5)=-(2y+15)+y equation:


Simplifying
5y + -2(y + 5) = -1(2y + 15) + y

Reorder the terms:
5y + -2(5 + y) = -1(2y + 15) + y
5y + (5 * -2 + y * -2) = -1(2y + 15) + y
5y + (-10 + -2y) = -1(2y + 15) + y

Reorder the terms:
-10 + 5y + -2y = -1(2y + 15) + y

Combine like terms: 5y + -2y = 3y
-10 + 3y = -1(2y + 15) + y

Reorder the terms:
-10 + 3y = -1(15 + 2y) + y
-10 + 3y = (15 * -1 + 2y * -1) + y
-10 + 3y = (-15 + -2y) + y

Combine like terms: -2y + y = -1y
-10 + 3y = -15 + -1y

Solving
-10 + 3y = -15 + -1y

Solving for variable 'y'.

Move all terms containing y to the left, all other terms to the right.

Add 'y' to each side of the equation.
-10 + 3y + y = -15 + -1y + y

Combine like terms: 3y + y = 4y
-10 + 4y = -15 + -1y + y

Combine like terms: -1y + y = 0
-10 + 4y = -15 + 0
-10 + 4y = -15

Add '10' to each side of the equation.
-10 + 10 + 4y = -15 + 10

Combine like terms: -10 + 10 = 0
0 + 4y = -15 + 10
4y = -15 + 10

Combine like terms: -15 + 10 = -5
4y = -5

Divide each side by '4'.
y = -1.25

Simplifying
y = -1.25

See similar equations:

| 3.7q-2.7-3.1q=-0.4q-5.8 | | 6x-7-2x+4=13 | | 6n+1+19=1 | | 10=n-(-3) | | 3.1q-4.1-3.6q=-1.5q-1.3 | | d+6=-2 | | 5y+3=2y-3x+5 | | 3(5-4k)=45 | | 3.7q-2.7-3.1q=-0.4-5.8 | | 12x+9=10x+9 | | 14-3z+8+z= | | 7r-5r+2=5r+2-r | | 10x+9=6x+37 | | 15-12k=45 | | 7p-5r+2=5r+2-r | | 5x^2+6x-17x^2-17= | | 4-k=8 | | 4x+3(x-2)=-(5x-20)-x | | -(x-1)-5(x-2)=-19 | | 10x-24=76 | | -(x-1)-5(x-2)=-(2y-4) | | 5x+25=12x-59 | | -0.5(.3x-.6)=-1.5 | | 0.3t+0.7(t-0.4)=2.29 | | -7y+7=-8y+5 | | 10(y+4)=2(2y+5) | | 3n^3=48n | | 3(2-y)-(-2)(y-2)=-(2y-4) | | -5y-4=21 | | (3x-2)(x+4)+11=0 | | 5x+10=10y | | 3y-21=12x |

Equations solver categories