If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5y^2+13y+6=0
a = 5; b = 13; c = +6;
Δ = b2-4ac
Δ = 132-4·5·6
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{49}=7$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(13)-7}{2*5}=\frac{-20}{10} =-2 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(13)+7}{2*5}=\frac{-6}{10} =-3/5 $
| 32=-5(-2b+1) | | z÷9-8=2 | | 3=2+5x | | 4m-24=32 | | 2(u+7)=20 | | -12=-3(z+4) | | -7u-7=6(u+1) | | -3x2+8x+3=0 | | 4(b-2)-10=2(b=3) | | -2(2y-3)=8 | | 0.5x-20-x=3(2x-1)-(2x-1) | | -7v+5(v-3)=-5 | | (X-3)+(x+1)+(x+1/2)=180 | | 5x-14=2(x-5) | | 3(x+4)-9=6x-3(-2+x) | | 2(w+3)=4 | | 3x2-8x-3=0 | | 8/20=y/60 | | 6x-2(x-4)=8/3=8 | | -9v+1.5=6 | | 2y+5+y=180 | | (2x-3)+(2x+3)+(2x+3)=33 | | x-355+80=2425 | | (2x+10=72 | | 1.5y+11=-1 | | 2y+5+2y=180 | | (2x-3)+6=2x+3 | | -7p=21 | | 1x+0=6x+0 | | 1.5=7u-2 | | 5+2x=x+4 | | 110-w=225 |