If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5y^2+24y=0
a = 5; b = 24; c = 0;
Δ = b2-4ac
Δ = 242-4·5·0
Δ = 576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{576}=24$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-24}{2*5}=\frac{-48}{10} =-4+4/5 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+24}{2*5}=\frac{0}{10} =0 $
| -(7x+2)-(-6x-8)=11 | | 14u-6u=8 | | -3+x÷3=13 | | q/2+7=4 | | 9/x+6=3/5 | | x^2+60x=5200 | | -3+x/3=13 | | -4(x+1)-3x=2(x+3) | | 64n=8 | | 2f+34=56 | | -2x+22=x+1 | | 6(t-4)+8t=7(2t+3)-8 | | 4(2x-2)=5x+22 | | 2(2x-1)-3(3-x)=x/4 | | x^2=64+36 | | x-2^2=15 | | 4/3=(81/3x1) | | 8a–7a–a+3a=6 | | Y+8=11y-42 | | 3(u+2)+1u=4(u-1)+10 | | -14+2c=-2 | | (2x-4)=(x+61) | | 4x-2-9-3x=x/4 | | 2(5x+4)=-2x-40 | | x/9+9=12 | | 13=1-(-3c) | | X+4y=162 | | 3=9-2k | | 1*X^2+314.019418*x+24673.20799626468=0 | | X-4+-7x=-8x+4+2x-7 | | 6-2x=5x-9+16 | | Y^2/2-y/6=1/12 |