If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5y^2+30y=0
a = 5; b = 30; c = 0;
Δ = b2-4ac
Δ = 302-4·5·0
Δ = 900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{900}=30$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(30)-30}{2*5}=\frac{-60}{10} =-6 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(30)+30}{2*5}=\frac{0}{10} =0 $
| Y=2(1/5)x | | Y=(0.3)x | | x+10÷2=3 | | Y=-1/2x+23/2 | | 1.3*10^-7=x^2/0.10 | | 1.3X10^-7=x^2/0.10 | | 47x+3=144 | | 5-10x+4x)=(-12+3x+8) | | 12+(m/7)=15 | | 8−x8=0 | | 5+10^2x=215 | | 216=128-x | | 20z-10=6z+18 | | 1/6-1/2=x-5/3 | | 15x-23+67=180 | | |7x-10|=|6+3x| | | 4x-15+x+25=90 | | 2/3(9-6x)=(3x+6)^2–9x2 | | 1/9f=21 | | 1/7x+8=-4 | | 18=1/5y | | -x2+8x+20=0 | | 9b-9+3b=-9 | | {2x}+{3x-10}+50=180 | | {3x+18}+93=180 | | k=84-12/8 | | X+2y=1502x+y=120 | | 500=2,5x10^-5xX | | p=13+4-10 | | 2(3b-5)=4(6b-)2 | | 1/3x=1500 | | 5.6u=12.88 |