If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5y^2-15y=0
a = 5; b = -15; c = 0;
Δ = b2-4ac
Δ = -152-4·5·0
Δ = 225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{225}=15$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-15)-15}{2*5}=\frac{0}{10} =0 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-15)+15}{2*5}=\frac{30}{10} =3 $
| 17=5w+13 | | 7x+15=2x-8 | | N=3y+4 | | x-1(-12)=-7 | | 15/x-2=3 | | 1/4(8x+16=-10 | | x-7/8=0,4 | | 19.a=19 | | 24=-(4/7)u | | x2-x=0 | | 4z-36=0 | | 9-4y=7-5y | | 34x=180 | | 1/3(x+4)=18 | | 4(x-1)/2=2(x+4)/6 | | -1.5+0.3v=0.5714 | | 2x+0.6=1.8x+2 | | 4a^2+20a+9=0 | | 2x+0.6=1.8+2 | | 3x-1/9x+1=0 | | x3+4x2+-6x+3=0 | | 2(3y+1)-(4y-7)=7-3(3y-2) | | 9/2x^2-72=0 | | x+(.15*x)=25 | | 0.04(y-4)+0.18y=0.14y-0.5 | | 4=x+35/7 | | x(x-3)+42=0 | | √x2-8=36 | | 7x+6-4(3+3x/4)=5x-1 | | x^2-4x=58 | | x+0,2=2/3 | | 2d=128 |