If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5y^2-180=0
a = 5; b = 0; c = -180;
Δ = b2-4ac
Δ = 02-4·5·(-180)
Δ = 3600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3600}=60$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-60}{2*5}=\frac{-60}{10} =-6 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+60}{2*5}=\frac{60}{10} =6 $
| 0.03x=1.03^60-1 | | 2(3x+1)^(-2)+7=25 | | 296x+23=1235 | | 3+5x=6+8x | | 15-n=2n+6 | | 5x=6+8x | | 2x-3=5x+x | | 20*p=160 | | 13-p=4 | | x+2/3=21/3 | | 2+6v=1-v | | 2x(x+8)=30 | | 9-3r=5-4r | | (x+12)+x=38 | | 9d·10=210 | | 3x=2.5x+30 | | 3y+6y=9y | | c+3=-c-5 | | 2(3-2y)=2-6y | | 2y+9y=11 | | 2-2x=26+4x | | 2*0,5=2x-3 | | 13x-4x^2=0 | | 25u^2=4 | | 4u(u-2)=0 | | 1/4(y+5)+7=1/3(4y-1)-12 | | x=10-150=x=3-7 | | 10-150=3-7x= | | 6x−10=20 | | -(10x-3)-(3x-5)+9=-4(x-1)-(12x+5)+3 | | 4x-8(.8)=40 | | x^2+14x+58=-10 |