If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5y^2-30y=0
a = 5; b = -30; c = 0;
Δ = b2-4ac
Δ = -302-4·5·0
Δ = 900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{900}=30$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-30)-30}{2*5}=\frac{0}{10} =0 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-30)+30}{2*5}=\frac{60}{10} =6 $
| 6-7v=-2-15v | | 5x^2=-8+22x | | 9y-3(y+4=3(4+y) | | -18-7t=-t | | 3^2x+20=9^4x+1 | | -20s+1=-19s-17 | | -3k+7=-9+k-8 | | 1.2m−12.1=4.6m−16.86 | | k3− 2= 2 | | -r=-15 | | -9-8t=-7t | | 3/4k+7/10=11/15k-2 | | 10-6h=6-10h | | 18c+c+8=-11 | | -15k=-10-14k | | 10+3s=-4s-2+9s | | 18−4f=-2 | | 10=3n+7 | | 5/6=(y+5)/7 | | 21r^2=16-16r | | 1/4x+6=1/2x+4 | | 4x^2+25x=36 | | 3.23+9.2f=7.9f−17.96 | | 2q-9=10-2q+5 | | k/17=36 | | 2d-7/2=2+4d/3 | | 4x-x-2x+2x=18 | | 7(-2-5x)=84 | | 43(x+2)=0 | | 43(x+2)=6 | | -3x+6=-13 | | 3(3r+5)=2(5r+3) |