If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5y^2-5y-4=0
a = 5; b = -5; c = -4;
Δ = b2-4ac
Δ = -52-4·5·(-4)
Δ = 105
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-\sqrt{105}}{2*5}=\frac{5-\sqrt{105}}{10} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+\sqrt{105}}{2*5}=\frac{5+\sqrt{105}}{10} $
| 135°=180°n-360°n | | 2x-5(-4+8x)=-10 | | 3x–16=41 | | 5k^2-7k+2=0 | | 5(n-4)=40 | | 100/60=25/x | | 3x+8x−4=14+X+7x | | 3x-1,x=7 | | x*5=3x+25 | | 28.26/3.14=3.14r^2/3.14 | | y+3.4=60 | | n=-107 | | 5t+9=-11 | | -5y+17=6(y+1) | | 180(x-2)=1440 | | x+3x−10+x+5=180° | | 2x–5(-6+7x)=-20 | | 11+x+18=180 | | 4a=–5a+45 | | 425,000÷x=60 | | 35+25a=5460 | | 425,000÷x=1 | | 35x+25=5460 | | 3x(7x+19)=940X | | 2x-5(-6+7x)=-20 | | g-65.75=59.25 | | g-65.75=5925 | | 7^(6x-4)=33 | | 8x+3+5=48 | | 3x2-17x=10 | | h/3=–7 | | |x+4|41=0 |