If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5y^2-8y=0
a = 5; b = -8; c = 0;
Δ = b2-4ac
Δ = -82-4·5·0
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{64}=8$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-8}{2*5}=\frac{0}{10} =0 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+8}{2*5}=\frac{16}{10} =1+3/5 $
| 20(6)=8(x) | | x=-3+5×2 | | 20x6=8(x) | | -62=2x+10 | | 6x+6=5x-8. | | x=-3+5-2 | | v2+12=0 | | 1000^8=10^w | | X+16+32=4x-16 | | 3y−5y+10=36 | | 4(u-3)-4=-3(-7u+4)-5u | | 2x-12=75 | | 35x-4=x+10 | | 6+24+4x=5x+8-3x | | 9(#)-2y=19 | | 5x+3x-7=2(4x+6) | | X=3k-11 | | -353+48+9n-11n+4n=-312+8n-9n+8 | | 13p+0.1=0 | | 8^2x-1=16^x-1 | | 61=16+11x | | 1/3(2x+12)=18 | | 4x-16+32=x+16 | | 2/3-2=n | | (2x-7)=(x+3) | | x−1=5 | | R(x)=3.50x+150 | | (y)/6+24-3=14 | | X+8+24=5x+4 | | C(x)=1.50x+12500 | | 4+4n=6+2n | | 3n+47-26=7n-5n+8-92 |