If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5y^2=125
We move all terms to the left:
5y^2-(125)=0
a = 5; b = 0; c = -125;
Δ = b2-4ac
Δ = 02-4·5·(-125)
Δ = 2500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2500}=50$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-50}{2*5}=\frac{-50}{10} =-5 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+50}{2*5}=\frac{50}{10} =5 $
| -13+4x=-4810x | | 5=y/3-14 | | 8(-8+5b)+5b=296 | | 38=2x=16 | | 11d=10=6d | | 13.50x+20=17x+6 | | 2/3+1/2(-7/2x+2)=-5/3x+13/8 | | t-78/4=3 | | 6-2g=10 | | -8p-3(-7p+1)=88 | | 2x+2(2x)=30 | | -6u+9=-8u+1 | | 3x+15+42=8x-13 | | 15=23-4s | | -5-22+4x^2=0 | | b/4+9=11 | | -(n+)= | | 22+11x=55 | | -2d=-8-79 | | 3x+15+37=9x-20 | | -8(x-2)-19=3x-200 | | 10x+10=4x+20 | | 6(x+2)=-76 | | 4*9=30-k/13 | | -8x(x-2)-19=3x-200 | | 5s-14=81 | | 8x+2x-90=-10 | | 2w=15.6 | | 11-2v=7 | | r/6=-9 | | 4(2x+2)=12100 | | 3(5x+)=8x+15+7x-6 |