If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5y^2=60
We move all terms to the left:
5y^2-(60)=0
a = 5; b = 0; c = -60;
Δ = b2-4ac
Δ = 02-4·5·(-60)
Δ = 1200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1200}=\sqrt{400*3}=\sqrt{400}*\sqrt{3}=20\sqrt{3}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-20\sqrt{3}}{2*5}=\frac{0-20\sqrt{3}}{10} =-\frac{20\sqrt{3}}{10} =-2\sqrt{3} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+20\sqrt{3}}{2*5}=\frac{0+20\sqrt{3}}{10} =\frac{20\sqrt{3}}{10} =2\sqrt{3} $
| O.3+0.2(10-x)=0.15(30) | | +2x+10=+28 | | y=1250(1-86.5) | | 90+m+44=180 | | 647957843799+19942104903859230389=1.9942106e+19 | | 5c=6c=7 | | -5.62=-2.7x-1.3 | | 0.4=x-3.7/0.7 | | -6p+8=-17+19-6p | | -9.35-0.5a=5(a-2.2) | | x=(0.0075-x)^2(5.56^3) | | y=1250(0.865) | | u+201=659 | | 13m=32 | | 2x9=5 | | 7(-b-14)=20-7b-18 | | 3x^2x-12x+39=0 | | y–10=-17 | | p-106=195 | | 90+m7+36=180 | | 3+(x/4)+2=-7 | | 9j+3-15j=-6-6j | | 5=a1/8 | | 9t-6-8t-12+t/12=2/3 | | 17x+4(-8-2x)=338 | | 17.7=-1.8+b/0.2 | | 3(x-2)^2-4=11 | | 180=121+98+x | | 94=t+8 | | X+13=10x+23=15x-2 | | 90+7x+3=180 | | -1=5+j/6 |