If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5z(5z+7)=0
We multiply parentheses
25z^2+35z=0
a = 25; b = 35; c = 0;
Δ = b2-4ac
Δ = 352-4·25·0
Δ = 1225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1225}=35$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(35)-35}{2*25}=\frac{-70}{50} =-1+2/5 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(35)+35}{2*25}=\frac{0}{50} =0 $
| -5/2v+2=-5/4v-5/3 | | 13x+4=14x-2 | | 3p+1=2p+15 | | 7+6d=7d | | -4(2x-4)=80 | | 726=-11(10x-6) | | (7t+1)(t-2)=0 | | 4(b-2=2(5-b) | | 4j=96 | | x=4(3.14)4 | | 5n-10=3+15n-13 | | -4/3=-5/7v-3/2 | | 2p-8=-3(2p+8) | | 8z-7z-1=13 | | -8n+7+n=-9+n | | 5x+75+-2x+18=-6 | | 15/x+17=32 | | (7x-5)+(14x-4)=180 | | 5x-2=46 | | m=16+4 | | 2x(x+8)=18 | | x+6/5=1/10 | | (7n-4)(n+2)=0 | | 2x+10-3x+4=3x+4 | | 3x+430=5x-170 | | 9-3z=-9-9z | | -87=3(6+7r) | | -6(-4u+4)-9u=3(u-7)-9 | | -3(-6+1/2x)=45/2 | | 2y3+10=64 | | K+9k-10=8k+10 | | -3-c-5=4+c |