If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5z^2-15z-50=0
a = 5; b = -15; c = -50;
Δ = b2-4ac
Δ = -152-4·5·(-50)
Δ = 1225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1225}=35$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-15)-35}{2*5}=\frac{-20}{10} =-2 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-15)+35}{2*5}=\frac{50}{10} =5 $
| 9y=28-5y | | 3x−15+6x+2=41 | | 11x(x-5)=10(x+5) | | |9x-5|=9x-18 | | 6x-4=6(x+2) | | 4x-14+2x=4+6x-18 | | 5x-4=7x+1 | | 3x+1+15=7x=1 | | 6(v+4)=8v+18 | | 200m-75m+62075=65000-200m | | 517−2p=4p+517 | | 3/8x-1/2×=3 | | 2y+6=9(y-4) | | 2/7x−7/3=3x+1/2 | | 1+1/5x=-3 | | 3(5x+6)=-46+4 | | X^2-3x=5x-15 | | (150x2)=(125x2) | | 135.731(x)+126.867=3927 | | (x+3)^2=12 | | 29=-x/8 | | -4u+12=2u-4 | | t^2+3t-1500=0 | | 3+4n=10+2n | | 3h+9=5 | | 8i^2+68i+32=0 | | x2–6x+9=0 | | 3(-4x-5)+2x=15 | | -1+31x+12=4x-3 | | 35x=25x+20 | | (12x^2+11x+3)=0 | | 28/x+6=7/2 |