6(-51r+59)=9(-32r-46)-66r

Simple and best practice solution for 6(-51r+59)=9(-32r-46)-66r equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 6(-51r+59)=9(-32r-46)-66r equation:


Simplifying
6(-51r + 59) = 9(-32r + -46) + -66r

Reorder the terms:
6(59 + -51r) = 9(-32r + -46) + -66r
(59 * 6 + -51r * 6) = 9(-32r + -46) + -66r
(354 + -306r) = 9(-32r + -46) + -66r

Reorder the terms:
354 + -306r = 9(-46 + -32r) + -66r
354 + -306r = (-46 * 9 + -32r * 9) + -66r
354 + -306r = (-414 + -288r) + -66r

Combine like terms: -288r + -66r = -354r
354 + -306r = -414 + -354r

Solving
354 + -306r = -414 + -354r

Solving for variable 'r'.

Move all terms containing r to the left, all other terms to the right.

Add '354r' to each side of the equation.
354 + -306r + 354r = -414 + -354r + 354r

Combine like terms: -306r + 354r = 48r
354 + 48r = -414 + -354r + 354r

Combine like terms: -354r + 354r = 0
354 + 48r = -414 + 0
354 + 48r = -414

Add '-354' to each side of the equation.
354 + -354 + 48r = -414 + -354

Combine like terms: 354 + -354 = 0
0 + 48r = -414 + -354
48r = -414 + -354

Combine like terms: -414 + -354 = -768
48r = -768

Divide each side by '48'.
r = -16

Simplifying
r = -16

See similar equations:

| 2t-78=t-14 | | 14(p-3)=-210 | | 3x+20=x+x+x+20 | | 4s-5=1 | | 9x-65=8x-51 | | -93+2z+30z=57z-2(15z-96) | | 4(5n+7)-3h=3(4n-9) | | -2r+11=15 | | -3p-4(5-3p)=6(p-2)-26 | | n^2+n-200=0 | | 804=12(12+5v) | | q+58=3q | | F(x)=x(x^2+3) | | 3(2x-1)-(4x+1)-2(5x-6)=8 | | 6x=1+6x-2 | | -4(42k-18)=2(-85k+42) | | f(x)=-10 | | 3(2x-1)-(4c+1)-2(5x-6)=8 | | -8x+7=15 | | 69+x+x=180 | | -6n-n+10=15-7n-5 | | y+9.8=13.16 | | y+9.8=13.16 | | 0.8(x+100)+x=161 | | -4x+8=9x-1 | | -223=12(2x-8)+5 | | 4y^2+4y-10=14 | | 2+3*5=x | | 7coshx-5sinhx=5 | | (2-4i)2=0 | | 2x+8=2x+6 | | x+36=6x+11 |

Equations solver categories