6(10-x)=3(3x-5)9(2x-1)

Simple and best practice solution for 6(10-x)=3(3x-5)9(2x-1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 6(10-x)=3(3x-5)9(2x-1) equation:


Simplifying
6(10 + -1x) = 3(3x + -5) * 9(2x + -1)
(10 * 6 + -1x * 6) = 3(3x + -5) * 9(2x + -1)
(60 + -6x) = 3(3x + -5) * 9(2x + -1)

Reorder the terms:
60 + -6x = 3(-5 + 3x) * 9(2x + -1)

Reorder the terms:
60 + -6x = 3(-5 + 3x) * 9(-1 + 2x)

Reorder the terms for easier multiplication:
60 + -6x = 3 * 9(-5 + 3x)(-1 + 2x)

Multiply 3 * 9
60 + -6x = 27(-5 + 3x)(-1 + 2x)

Multiply (-5 + 3x) * (-1 + 2x)
60 + -6x = 27(-5(-1 + 2x) + 3x * (-1 + 2x))
60 + -6x = 27((-1 * -5 + 2x * -5) + 3x * (-1 + 2x))
60 + -6x = 27((5 + -10x) + 3x * (-1 + 2x))
60 + -6x = 27(5 + -10x + (-1 * 3x + 2x * 3x))
60 + -6x = 27(5 + -10x + (-3x + 6x2))

Combine like terms: -10x + -3x = -13x
60 + -6x = 27(5 + -13x + 6x2)
60 + -6x = (5 * 27 + -13x * 27 + 6x2 * 27)
60 + -6x = (135 + -351x + 162x2)

Solving
60 + -6x = 135 + -351x + 162x2

Solving for variable 'x'.

Reorder the terms:
60 + -135 + -6x + 351x + -162x2 = 135 + -351x + 162x2 + -135 + 351x + -162x2

Combine like terms: 60 + -135 = -75
-75 + -6x + 351x + -162x2 = 135 + -351x + 162x2 + -135 + 351x + -162x2

Combine like terms: -6x + 351x = 345x
-75 + 345x + -162x2 = 135 + -351x + 162x2 + -135 + 351x + -162x2

Reorder the terms:
-75 + 345x + -162x2 = 135 + -135 + -351x + 351x + 162x2 + -162x2

Combine like terms: 135 + -135 = 0
-75 + 345x + -162x2 = 0 + -351x + 351x + 162x2 + -162x2
-75 + 345x + -162x2 = -351x + 351x + 162x2 + -162x2

Combine like terms: -351x + 351x = 0
-75 + 345x + -162x2 = 0 + 162x2 + -162x2
-75 + 345x + -162x2 = 162x2 + -162x2

Combine like terms: 162x2 + -162x2 = 0
-75 + 345x + -162x2 = 0

Factor out the Greatest Common Factor (GCF), '3'.
3(-25 + 115x + -54x2) = 0

Ignore the factor 3.

Subproblem 1

Set the factor '(-25 + 115x + -54x2)' equal to zero and attempt to solve: Simplifying -25 + 115x + -54x2 = 0 Solving -25 + 115x + -54x2 = 0 Begin completing the square. Divide all terms by -54 the coefficient of the squared term: Divide each side by '-54'. 0.462962963 + -2.12962963x + x2 = 0 Move the constant term to the right: Add '-0.462962963' to each side of the equation. 0.462962963 + -2.12962963x + -0.462962963 + x2 = 0 + -0.462962963 Reorder the terms: 0.462962963 + -0.462962963 + -2.12962963x + x2 = 0 + -0.462962963 Combine like terms: 0.462962963 + -0.462962963 = 0.000000000 0.000000000 + -2.12962963x + x2 = 0 + -0.462962963 -2.12962963x + x2 = 0 + -0.462962963 Combine like terms: 0 + -0.462962963 = -0.462962963 -2.12962963x + x2 = -0.462962963 The x term is -2.12962963x. Take half its coefficient (-1.064814815). Square it (1.133830590) and add it to both sides. Add '1.133830590' to each side of the equation. -2.12962963x + 1.133830590 + x2 = -0.462962963 + 1.133830590 Reorder the terms: 1.133830590 + -2.12962963x + x2 = -0.462962963 + 1.133830590 Combine like terms: -0.462962963 + 1.133830590 = 0.670867627 1.133830590 + -2.12962963x + x2 = 0.670867627 Factor a perfect square on the left side: (x + -1.064814815)(x + -1.064814815) = 0.670867627 Calculate the square root of the right side: 0.819065093 Break this problem into two subproblems by setting (x + -1.064814815) equal to 0.819065093 and -0.819065093.

Subproblem 1

x + -1.064814815 = 0.819065093 Simplifying x + -1.064814815 = 0.819065093 Reorder the terms: -1.064814815 + x = 0.819065093 Solving -1.064814815 + x = 0.819065093 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '1.064814815' to each side of the equation. -1.064814815 + 1.064814815 + x = 0.819065093 + 1.064814815 Combine like terms: -1.064814815 + 1.064814815 = 0.000000000 0.000000000 + x = 0.819065093 + 1.064814815 x = 0.819065093 + 1.064814815 Combine like terms: 0.819065093 + 1.064814815 = 1.883879908 x = 1.883879908 Simplifying x = 1.883879908

Subproblem 2

x + -1.064814815 = -0.819065093 Simplifying x + -1.064814815 = -0.819065093 Reorder the terms: -1.064814815 + x = -0.819065093 Solving -1.064814815 + x = -0.819065093 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '1.064814815' to each side of the equation. -1.064814815 + 1.064814815 + x = -0.819065093 + 1.064814815 Combine like terms: -1.064814815 + 1.064814815 = 0.000000000 0.000000000 + x = -0.819065093 + 1.064814815 x = -0.819065093 + 1.064814815 Combine like terms: -0.819065093 + 1.064814815 = 0.245749722 x = 0.245749722 Simplifying x = 0.245749722

Solution

The solution to the problem is based on the solutions from the subproblems. x = {1.883879908, 0.245749722}

Solution

x = {1.883879908, 0.245749722}

See similar equations:

| 18-7(3-x)=0 | | 3y+7=4x-7+9 | | 5(y-3)+2=4(2y+5) | | 13x+1=5(3+2x)+x | | -6(y+2)-3=15 | | z+18=32 | | 24-[5+6y-3(y+3)]=-4(5y-7)-[6(y-1)-16y+20] | | 9x+16=52 | | 2+3(12-x)=2(x-6)8(x+1)+1 | | 12(s+.66)=10.4 | | 5(x+y)-x+y=-4 | | 3(9-5t)-5(9-10t)=7 | | y-19=-2 | | 5(9+2x)=32-x | | q(x+2)=-x^2+4x+1 | | 2(b+83.33)=416.66 | | 12+3x=x^2 | | -5+4r=3 | | 2x+y+2x-5-y=0 | | 20x+15x^2+20=0 | | 2(x+y)-4(x+y)=8(x+2)-8(y+2) | | x=180-(2x-15) | | 8+3(x+4)=32-x | | X-(0.3X)=420 | | -7(2p-1)+3(8-p)=0 | | 3-z=-16 | | 8(5-x)=3x-4 | | -5(5x+6)=-3(8x-5)+4x | | n+.1=n | | 3(x+5)=5x+19-4x | | 5(3u+4)+2(4u-5)= | | 3a-1=3a+3 |

Equations solver categories