6(2)+15(2)=c(2)

Simple and best practice solution for 6(2)+15(2)=c(2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 6(2)+15(2)=c(2) equation:



6(2)+15(2)=c(2)
We move all terms to the left:
6(2)+15(2)-(c(2))=0
determiningTheFunctionDomain -c2+62+152=0
We add all the numbers together, and all the variables
-1c^2+214=0
a = -1; b = 0; c = +214;
Δ = b2-4ac
Δ = 02-4·(-1)·214
Δ = 856
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{856}=\sqrt{4*214}=\sqrt{4}*\sqrt{214}=2\sqrt{214}$
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{214}}{2*-1}=\frac{0-2\sqrt{214}}{-2} =-\frac{2\sqrt{214}}{-2} =-\frac{\sqrt{214}}{-1} $
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{214}}{2*-1}=\frac{0+2\sqrt{214}}{-2} =\frac{2\sqrt{214}}{-2} =\frac{\sqrt{214}}{-1} $

See similar equations:

| x^2+18x+24=0 | | 4.2+3.9+5+(x)=21.5 | | 7x-8=-85 | | 3+4b=7b-18 | | 89m=356 | | 1+3(x-6)=52 | | 9w=12+7w | | 3-2/3a=4 | | k-(-45)=-67 | | 40=7j+2j | | 40=7j=2j | | 8x-3x+4=36 | | 3c+15=-22+17 | | 7(3s+2)=140 | | 7^x-1=10 | | 2(-2+x)=x-1/4 | | x2+3x+1=5 | | 17-x=2x-2 | | (x+(x*0.66))=22 | | 1/20x^2+45=0 | | 2.8/(x)=0.64 | | 8s(s+3)=72 | | -5=-14x | | 1-9x=9-9x | | -11=-8x | | 119=80+6×x | | 1/7x-11/7=3x | | -2x=-5x-24 | | 5y-9+y+45=5y+40-1y | | -x-14=6x | | 7y+14=2× | | 3w+5=4 |

Equations solver categories