6(2a-1)=-2a(a+17)

Simple and best practice solution for 6(2a-1)=-2a(a+17) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 6(2a-1)=-2a(a+17) equation:



6(2a-1)=-2a(a+17)
We move all terms to the left:
6(2a-1)-(-2a(a+17))=0
We multiply parentheses
12a-(-2a(a+17))-6=0
We calculate terms in parentheses: -(-2a(a+17)), so:
-2a(a+17)
We multiply parentheses
-2a^2-34a
Back to the equation:
-(-2a^2-34a)
We get rid of parentheses
2a^2+34a+12a-6=0
We add all the numbers together, and all the variables
2a^2+46a-6=0
a = 2; b = 46; c = -6;
Δ = b2-4ac
Δ = 462-4·2·(-6)
Δ = 2164
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2164}=\sqrt{4*541}=\sqrt{4}*\sqrt{541}=2\sqrt{541}$
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(46)-2\sqrt{541}}{2*2}=\frac{-46-2\sqrt{541}}{4} $
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(46)+2\sqrt{541}}{2*2}=\frac{-46+2\sqrt{541}}{4} $

See similar equations:

| 23x-5-18x=23x-5-x^2+45 | | 16*x=20 | | 13=-4x-5 | | 2n+5=-4n-3 | | 3y-2/8=7y-2/16 | | X+41,95=x+78 | | X+4=x^2-4 | | 5x-6-3x=2(x-3) | | F(x)=+14.50 | | -6(2x+1)=3(x-4)=-15x+1 | | 23-2(5a+9)=5(2a-11) | | 12x+4=8x+6 | | 3(-c-18)=3c-18 | | 6c-8-2=-16 | | -(2y-3)=-3(7+y | | 138=-3(2+6v) | | ((x)/(x−2))+((2)/(x+1))=((7x+1)/(x^2−x−2)) | | 2(2x+7)+2(3x-11)=x+37 | | ((x)/(x−2))+((2)/(x+1)=((7x+1)/(x^2−x−2) | | 11y-9y-12=26.56 | | 30-6x=120-26x | | (x/x−2)+(2/x+1)=(7x+1/x^2−x−2) | | 2/3(5-k)=2 | | 2(1/2q-1)=-3(2q-1)+4(2q+1) | | -15=25z | | -5(2x+7)=-10x+25 | | 2x+3=9.x= | | v/4-2/5=v/10+1/2 | | (-2x+5)^2=8 | | 5x+(8)/(9)x=180 | | x*848+34x=x*3948-32*x | | 65+11x-17=190 |

Equations solver categories