If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6(2n-3)+n(2-6)=3(n-9n^2)+2(n+7)
We move all terms to the left:
6(2n-3)+n(2-6)-(3(n-9n^2)+2(n+7))=0
We add all the numbers together, and all the variables
-(3(n-9n^2)+2(n+7))+6(2n-3)+n(-4)=0
We multiply parentheses
-(3(n-9n^2)+2(n+7))+12n-4n-18=0
We calculate terms in parentheses: -(3(n-9n^2)+2(n+7)), so:We add all the numbers together, and all the variables
3(n-9n^2)+2(n+7)
We multiply parentheses
-27n^2+3n+2n+14
We add all the numbers together, and all the variables
-27n^2+5n+14
Back to the equation:
-(-27n^2+5n+14)
-(-27n^2+5n+14)+8n-18=0
We get rid of parentheses
27n^2-5n+8n-14-18=0
We add all the numbers together, and all the variables
27n^2+3n-32=0
a = 27; b = 3; c = -32;
Δ = b2-4ac
Δ = 32-4·27·(-32)
Δ = 3465
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3465}=\sqrt{9*385}=\sqrt{9}*\sqrt{385}=3\sqrt{385}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-3\sqrt{385}}{2*27}=\frac{-3-3\sqrt{385}}{54} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+3\sqrt{385}}{2*27}=\frac{-3+3\sqrt{385}}{54} $
| 5-8(x-2)=2 | | 2x*8=16 | | 4x-3-10x-12=8+12x-5 | | 5(x•2)=25 | | 3(5x+6)=6(2x-12) | | 2x+15=6x+51 | | 1/9(18x-45)+7x=31 | | x+23+3x+1=180 | | 1/9(18x-45)7x=31 | | 3x+5+6x+4=180 | | 2176+x=37 | | 6-4p=7-2p= | | 2x+÷=5x+6 | | 8(5-1/4x)=-6 | | 37x=2176 | | 200.16+30.76x=292.44 | | 8+4x=3x+6 | | 6-6p=7-2p | | 8+4x=4x+6 | | 4^(1/x)=2 | | 1.3r=13.14 | | 23=5-6w | | -6x+5(2x+1)=29x | | 3=2v−5 | | 6(2-7x)-5(x-1)=-30 | | -5/3y+2/3=-5/4y-2 | | 1+7x+3x=19 | | 1,000,000=10^1.5x | | -1/2v-5/3=3v-1/3 | | 1/2v-5/3=3v-1/3 | | 5x-1=14x-14 | | -4(1-3x)+1=18 |