6(2y+6)=4(9+3y)12y+36=36+12y12y=12y0=0

Simple and best practice solution for 6(2y+6)=4(9+3y)12y+36=36+12y12y=12y0=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 6(2y+6)=4(9+3y)12y+36=36+12y12y=12y0=0 equation:



6(2y+6)=4(9+3y)12y+36=36+12y^12y=12y^0=0
We move all terms to the left:
6(2y+6)-(4(9+3y)12y+36)=0
We add all the numbers together, and all the variables
6(2y+6)-(4(3y+9)12y+36)=0
We multiply parentheses
12y-(4(3y+9)12y+36)+36=0
We calculate terms in parentheses: -(4(3y+9)12y+36), so:
4(3y+9)12y+36
We multiply parentheses
144y^2+432y+36
Back to the equation:
-(144y^2+432y+36)
We get rid of parentheses
-144y^2+12y-432y-36+36=0
We add all the numbers together, and all the variables
-144y^2-420y=0
a = -144; b = -420; c = 0;
Δ = b2-4ac
Δ = -4202-4·(-144)·0
Δ = 176400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{176400}=420$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-420)-420}{2*-144}=\frac{0}{-288} =0 $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-420)+420}{2*-144}=\frac{840}{-288} =-2+11/12 $

See similar equations:

| 14.47-17.998=5.6y+23.89 | | 9x+10+119-2x+4x+9=180 | | 4.5+10m=8.26 | | 10-5k=-3k | | -22=5x-6 | | 3=12+m/2 | | |5x-10|=6x | | -5x-15=100 | | 4n-32=8(-n+6)+2n | | |4m+7|=-15 | | -3x+12+10x=5x+20 | | 9x+10+119-2x+4x+9=360 | | 42/b^2=1-1/b | | 6x+5+120=36x+5 | | 4p-3=7p-12 | | -14=-(-2r+2) | | 9w+8=160 | | 4(5n+7)-3n=3(4n-9)n=-11 | | -4z+6=23z-3 | | -7u=-42 | | 2y-3(5y-1)=-1-5(1-y) | | 8+6x=10x=16-8x | | (x+10)*x=144 | | ×-6+x+18=72 | | -30/13+12b=0 | | 2(x-3)+5=3(x=1)I | | 5g=2=10 | | 4f+1=-7 | | 9w+6w−13w=8 | | 5x+2x-3=10x-3x+5-8 | | x^2(10)(250)=0 | | -3=12y-5(2y-y) |

Equations solver categories