6(2z-1)-2(z+6)=7(z+1)

Simple and best practice solution for 6(2z-1)-2(z+6)=7(z+1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 6(2z-1)-2(z+6)=7(z+1) equation:


Simplifying
6(2z + -1) + -2(z + 6) = 7(z + 1)

Reorder the terms:
6(-1 + 2z) + -2(z + 6) = 7(z + 1)
(-1 * 6 + 2z * 6) + -2(z + 6) = 7(z + 1)
(-6 + 12z) + -2(z + 6) = 7(z + 1)

Reorder the terms:
-6 + 12z + -2(6 + z) = 7(z + 1)
-6 + 12z + (6 * -2 + z * -2) = 7(z + 1)
-6 + 12z + (-12 + -2z) = 7(z + 1)

Reorder the terms:
-6 + -12 + 12z + -2z = 7(z + 1)

Combine like terms: -6 + -12 = -18
-18 + 12z + -2z = 7(z + 1)

Combine like terms: 12z + -2z = 10z
-18 + 10z = 7(z + 1)

Reorder the terms:
-18 + 10z = 7(1 + z)
-18 + 10z = (1 * 7 + z * 7)
-18 + 10z = (7 + 7z)

Solving
-18 + 10z = 7 + 7z

Solving for variable 'z'.

Move all terms containing z to the left, all other terms to the right.

Add '-7z' to each side of the equation.
-18 + 10z + -7z = 7 + 7z + -7z

Combine like terms: 10z + -7z = 3z
-18 + 3z = 7 + 7z + -7z

Combine like terms: 7z + -7z = 0
-18 + 3z = 7 + 0
-18 + 3z = 7

Add '18' to each side of the equation.
-18 + 18 + 3z = 7 + 18

Combine like terms: -18 + 18 = 0
0 + 3z = 7 + 18
3z = 7 + 18

Combine like terms: 7 + 18 = 25
3z = 25

Divide each side by '3'.
z = 8.333333333

Simplifying
z = 8.333333333

See similar equations:

| -18timesn=-90 | | 5x+39=14x-33 | | 3m*4m= | | 5(y-7)-2y=1-3[(4y+7)-2(y-3)] | | 2y+5-2y-6= | | 8x+6=9x-6 | | x-14=27 | | 3mn+3-7mn-8= | | 9-p=0.5p | | 14y-7=68-y | | 9-5p=0.5p | | x^2+7x+44=0 | | 2x(3x+2)=6x^2-8 | | 6x+2-4x=-2 | | 3=5p+4-4p | | 7x^2+6x+8=2x^2-8x | | 1.6x+3.5=9.9 | | 5y+9-2y+2= | | -4+-9= | | -3*3= | | 135-5x=40x+15 | | x*-4= | | -4*-3= | | 3j=5.7 | | -4*3= | | 10-9x=36-23x | | 3=w-1 | | 2x+y=12 | | k+2=-3 | | 6x^2+5=53 | | 16x+15=8x+46 | | 2(3a+6)-18=4a-2 |

Equations solver categories