6(m-2)-4(m+1)/3m+1;m=3

Simple and best practice solution for 6(m-2)-4(m+1)/3m+1;m=3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 6(m-2)-4(m+1)/3m+1;m=3 equation:



6(m-2)-4(m+1)/3m+1m=3
We move all terms to the left:
6(m-2)-4(m+1)/3m+1m-(3)=0
Domain of the equation: 3m!=0
m!=0/3
m!=0
m∈R
We add all the numbers together, and all the variables
m+6(m-2)-4(m+1)/3m-3=0
We multiply parentheses
m+6m-4(m+1)/3m-12-3=0
We multiply all the terms by the denominator
m*3m+6m*3m-4(m+1)-12*3m-3*3m=0
We multiply parentheses
m*3m+6m*3m-4m-12*3m-3*3m-4=0
Wy multiply elements
3m^2+18m^2-4m-36m-9m-4=0
We add all the numbers together, and all the variables
21m^2-49m-4=0
a = 21; b = -49; c = -4;
Δ = b2-4ac
Δ = -492-4·21·(-4)
Δ = 2737
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-49)-\sqrt{2737}}{2*21}=\frac{49-\sqrt{2737}}{42} $
$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-49)+\sqrt{2737}}{2*21}=\frac{49+\sqrt{2737}}{42} $

See similar equations:

| 3=q-66/9 | | 3(x+2)−7+2x=14 | | 4(2s+1)=2(4s−1)+6. | | 2(8y-5)=18y | | 17n=90 | | 5x-4+3=-6 | | 4x-16+7x+19=25 | | 2/5x+9=3 | | -4z+3=15 | | 18x-6=30×+57 | | 4(x-3)+2x=42 | | 4(3x-2)=5x-1 | | 175=65+29w | | (8x-4)+5=8 | | C=120+69n | | x+4(2x+3)=21 | | x/x+3=2/4 | | 3/2x+3+4=4x-5/2x-7 | | (6x-1)+79=144 | | 19(j−920)=684 | | -2(u+8)=2u-8+2(2u+5) | | 6d+7-3=2d+4d+4 | | 9m-7-2m-49=0 | | x*6=9 | | 6x+4(2x-6)=20 | | -2=÷t10 | | 5(j=7)=55 | | 212=22+19f | | 3−3t=6 | | 2x+22=3 | | 6(v+4)=-4(2v-7)+4v | | 8•(x+2)=4(2x+9) |

Equations solver categories