If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6(t-5)8t=96
We move all terms to the left:
6(t-5)8t-(96)=0
We multiply parentheses
48t^2-240t-96=0
a = 48; b = -240; c = -96;
Δ = b2-4ac
Δ = -2402-4·48·(-96)
Δ = 76032
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{76032}=\sqrt{2304*33}=\sqrt{2304}*\sqrt{33}=48\sqrt{33}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-240)-48\sqrt{33}}{2*48}=\frac{240-48\sqrt{33}}{96} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-240)+48\sqrt{33}}{2*48}=\frac{240+48\sqrt{33}}{96} $
| t/2+12=15 | | 10(3x+1)=20 | | 0.85x=2 | | y/4+8=25 | | 8x-3(5x+19)=-22 | | 5/6=12x | | 7=a-92/3 | | 12w-9=3w+81 | | 8(a+3)=+24 | | 0=-240r^-2+4(3.14)r | | 4-6(7-m)=4 | | 1/2x+12=46 | | 3(z+4)=3z+ | | 0.05x+1=0.03(x+50) | | z=8+0.2/1 | | 3(2)^x=96 | | 7x+5=165 | | 4=6(7-m)=4 | | 180*(20-2)/20=n | | 2.6=z-5.6 | | -3(x+7)=3-(-5) | | -16+15x=13x+28 | | 7(4+b)=28+ | | 3x-4+6x=20-3x+8 | | 9x-4=42 | | x/x-5=25/x^2-5x | | (3*x)-18=39 | | -4x+2/6=7 | | 2(4a-9)+3=5a-1 | | 10x-8x+12=-6 | | x=18+0.4/0.4 | | 6(3+a)=+6a |