6(x+1)(x+1)-14=0

Simple and best practice solution for 6(x+1)(x+1)-14=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 6(x+1)(x+1)-14=0 equation:


Simplifying
6(x + 1)(x + 1) + -14 = 0

Reorder the terms:
6(1 + x)(x + 1) + -14 = 0

Reorder the terms:
6(1 + x)(1 + x) + -14 = 0

Multiply (1 + x) * (1 + x)
6(1(1 + x) + x(1 + x)) + -14 = 0
6((1 * 1 + x * 1) + x(1 + x)) + -14 = 0
6((1 + 1x) + x(1 + x)) + -14 = 0
6(1 + 1x + (1 * x + x * x)) + -14 = 0
6(1 + 1x + (1x + x2)) + -14 = 0

Combine like terms: 1x + 1x = 2x
6(1 + 2x + x2) + -14 = 0
(1 * 6 + 2x * 6 + x2 * 6) + -14 = 0
(6 + 12x + 6x2) + -14 = 0

Reorder the terms:
6 + -14 + 12x + 6x2 = 0

Combine like terms: 6 + -14 = -8
-8 + 12x + 6x2 = 0

Solving
-8 + 12x + 6x2 = 0

Solving for variable 'x'.

Factor out the Greatest Common Factor (GCF), '2'.
2(-4 + 6x + 3x2) = 0

Ignore the factor 2.

Subproblem 1

Set the factor '(-4 + 6x + 3x2)' equal to zero and attempt to solve: Simplifying -4 + 6x + 3x2 = 0 Solving -4 + 6x + 3x2 = 0 Begin completing the square. Divide all terms by 3 the coefficient of the squared term: Divide each side by '3'. -1.333333333 + 2x + x2 = 0 Move the constant term to the right: Add '1.333333333' to each side of the equation. -1.333333333 + 2x + 1.333333333 + x2 = 0 + 1.333333333 Reorder the terms: -1.333333333 + 1.333333333 + 2x + x2 = 0 + 1.333333333 Combine like terms: -1.333333333 + 1.333333333 = 0.000000000 0.000000000 + 2x + x2 = 0 + 1.333333333 2x + x2 = 0 + 1.333333333 Combine like terms: 0 + 1.333333333 = 1.333333333 2x + x2 = 1.333333333 The x term is 2x. Take half its coefficient (1). Square it (1) and add it to both sides. Add '1' to each side of the equation. 2x + 1 + x2 = 1.333333333 + 1 Reorder the terms: 1 + 2x + x2 = 1.333333333 + 1 Combine like terms: 1.333333333 + 1 = 2.333333333 1 + 2x + x2 = 2.333333333 Factor a perfect square on the left side: (x + 1)(x + 1) = 2.333333333 Calculate the square root of the right side: 1.527525232 Break this problem into two subproblems by setting (x + 1) equal to 1.527525232 and -1.527525232.

Subproblem 1

x + 1 = 1.527525232 Simplifying x + 1 = 1.527525232 Reorder the terms: 1 + x = 1.527525232 Solving 1 + x = 1.527525232 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-1' to each side of the equation. 1 + -1 + x = 1.527525232 + -1 Combine like terms: 1 + -1 = 0 0 + x = 1.527525232 + -1 x = 1.527525232 + -1 Combine like terms: 1.527525232 + -1 = 0.527525232 x = 0.527525232 Simplifying x = 0.527525232

Subproblem 2

x + 1 = -1.527525232 Simplifying x + 1 = -1.527525232 Reorder the terms: 1 + x = -1.527525232 Solving 1 + x = -1.527525232 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-1' to each side of the equation. 1 + -1 + x = -1.527525232 + -1 Combine like terms: 1 + -1 = 0 0 + x = -1.527525232 + -1 x = -1.527525232 + -1 Combine like terms: -1.527525232 + -1 = -2.527525232 x = -2.527525232 Simplifying x = -2.527525232

Solution

The solution to the problem is based on the solutions from the subproblems. x = {0.527525232, -2.527525232}

Solution

x = {0.527525232, -2.527525232}

See similar equations:

| 10(x-2)=-2+40 | | 10+4x=7x+4 | | -12=-2x+3 | | 8+x=-4x-32 | | (5/7)=(x/21) | | 4y=-2x-1 | | 0.009/9 | | x+4=76-5x | | 33-x=33 | | 0.09/18 | | 7x-3=3x+41 | | 11(-5+4)= | | -y-7=-12 | | 576+100=x | | 2+6x+6x=26 | | Log(2)523=x | | -6+3x+6x=93 | | (-13)(-13)= | | 52=x+3x+4 | | 10x^3-70x^2+100x= | | 4x+2+2x=44 | | 3-6x-3x=-69 | | 3t=7yx+b | | 9+7x+x=73 | | 0.12*7= | | 2x-8+7x=-116 | | 18z+16z= | | (4-5x)/(9x+2) | | -95=7x+2x+4 | | (10)/(2a-4)=-1 | | -3x-2+7x=26 | | -9.35+1.28y-4.75-5.29y= |

Equations solver categories