6(x+1)(x-1)=13(x-1)+1

Simple and best practice solution for 6(x+1)(x-1)=13(x-1)+1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 6(x+1)(x-1)=13(x-1)+1 equation:



6(x+1)(x-1)=13(x-1)+1
We move all terms to the left:
6(x+1)(x-1)-(13(x-1)+1)=0
We use the square of the difference formula
x^2-(13(x-1)+1)-1=0
We calculate terms in parentheses: -(13(x-1)+1), so:
13(x-1)+1
We multiply parentheses
13x-13+1
We add all the numbers together, and all the variables
13x-12
Back to the equation:
-(13x-12)
We get rid of parentheses
x^2-13x+12-1=0
We add all the numbers together, and all the variables
x^2-13x+11=0
a = 1; b = -13; c = +11;
Δ = b2-4ac
Δ = -132-4·1·11
Δ = 125
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{125}=\sqrt{25*5}=\sqrt{25}*\sqrt{5}=5\sqrt{5}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-13)-5\sqrt{5}}{2*1}=\frac{13-5\sqrt{5}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-13)+5\sqrt{5}}{2*1}=\frac{13+5\sqrt{5}}{2} $

See similar equations:

| s/9+27=29 | | 6-2/3k=11 | | 102=69-7x+4x | | 120=x*(1,5x+3) | | 2|x|+3=18 | | 28=8w-20 | | 27k+9=-2k-16 | | 12+1-x+3=5x-4x | | 1/3(2+-3a)=6-a | | 4(3+2a)=44 | | 3x-66=180 | | -37=12+7r | | 2x+4=2x^2 | | 6y^2+y-2=0 | | -5b+4b=4 | | (k+1)=(7k-5) | | 5÷12=35÷n | | 2+6x=-5+5x | | -8-2n+6n=-20 | | 8x-5(x-3)=1 | | ⏐n-4⏐=13 | | 3k/k=20-k/3k | | 9g=405 | | z/4=3/10z+8 | | -1m/5+2=6 | | 6b=246 | | 6d=222 | | 22.97=4g+3.61 | | h-4=26 | | 2(a+36)=2-7-3a | | 4x+3(2x-4)=2x | | (2x+3)^2-(x+1)^2=0 |

Equations solver categories