6(x2-4)+8-2x2=7

Simple and best practice solution for 6(x2-4)+8-2x2=7 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 6(x2-4)+8-2x2=7 equation:



6(x2-4)+8-2x^2=7
We move all terms to the left:
6(x2-4)+8-2x^2-(7)=0
We add all the numbers together, and all the variables
-2x^2+6(+x^2-4)+8-7=0
We add all the numbers together, and all the variables
-2x^2+6(+x^2-4)+1=0
We multiply parentheses
-2x^2+6x^2-24+1=0
We add all the numbers together, and all the variables
4x^2-23=0
a = 4; b = 0; c = -23;
Δ = b2-4ac
Δ = 02-4·4·(-23)
Δ = 368
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{368}=\sqrt{16*23}=\sqrt{16}*\sqrt{23}=4\sqrt{23}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{23}}{2*4}=\frac{0-4\sqrt{23}}{8} =-\frac{4\sqrt{23}}{8} =-\frac{\sqrt{23}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{23}}{2*4}=\frac{0+4\sqrt{23}}{8} =\frac{4\sqrt{23}}{8} =\frac{\sqrt{23}}{2} $

See similar equations:

| 3x-5•12=8•15 | | x+0.6=2 | | 2t+1.3=3.” | | 6-2x+8=-4 | | 12.5=2x-3.6 | | .5v=100 | | 2y+3(y+7)=-14 | | 5+14a=-5+9a | | 6x^2+28x=2x-10 | | P+7p=14 | | 55-3x=37 | | n⁴=1/16 | | -11=7(u-3)-2u | | 52-x=10 | | 0.2³=n | | 5=2x+5(x+8) | | 2y+46=2y-36 | | (3/4)²=n | | 175m-125m+48750=50750-200m | | x/4-12=-3 | | 11-3*x=75 | | 5x-6=66-6 | | 2z+(5+z)=17 | | 2+4f-f=8-3f | | 11.4=h+6.9 | | (¾)²=n | | 3(2m+8)=30 | | b+31/9=5 | | 5.50x+6.25(100x)=6.00 | | 4t-2t-1=11 | | p-28=13 | | 17c-18c-18c=19 |

Equations solver categories