If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6(y-6)y=9
We move all terms to the left:
6(y-6)y-(9)=0
We multiply parentheses
6y^2-36y-9=0
a = 6; b = -36; c = -9;
Δ = b2-4ac
Δ = -362-4·6·(-9)
Δ = 1512
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1512}=\sqrt{36*42}=\sqrt{36}*\sqrt{42}=6\sqrt{42}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-36)-6\sqrt{42}}{2*6}=\frac{36-6\sqrt{42}}{12} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-36)+6\sqrt{42}}{2*6}=\frac{36+6\sqrt{42}}{12} $
| -30=x+41 | | 34x+78=34x+26 | | 2n-2=3n-96 | | 100(x−3)=1,000 | | 0.5(4d6)=19 | | 61x+1=31x | | 2/5m=250 | | O.23d-3.6=-1.3 | | y=-2/3*1/3 | | 6q+1+q+11=0 | | 1/4m=200 | | 243^2x=1/9 | | -(p+3)=-2(2p+1)-7 | | 2/5k=150 | | 50=2x+13 | | 6x+5-7x-4=180 | | 31x=61x+1 | | 10p+19=4p-5 | | -10=c-4 | | x+16=60-75x | | -2p+4p-7=9 | | 3x-61=2x–50 | | -2/5w+1/2=-2/3 | | w/2.5=42 | | -504=1.26d | | 9y+8-4y=3(y-2) | | 0.008x-0.2x=1.32 | | -2=h/9 | | 1.25t+15=90 | | 4c-3D=2 | | 20x-1=18x+3 | | z–20=–4 |