6+(1/3x)=x+4

Simple and best practice solution for 6+(1/3x)=x+4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 6+(1/3x)=x+4 equation:



6+(1/3x)=x+4
We move all terms to the left:
6+(1/3x)-(x+4)=0
Domain of the equation: 3x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+1/3x)-(x+4)+6=0
We get rid of parentheses
1/3x-x-4+6=0
We multiply all the terms by the denominator
-x*3x-4*3x+6*3x+1=0
Wy multiply elements
-3x^2-12x+18x+1=0
We add all the numbers together, and all the variables
-3x^2+6x+1=0
a = -3; b = 6; c = +1;
Δ = b2-4ac
Δ = 62-4·(-3)·1
Δ = 48
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{48}=\sqrt{16*3}=\sqrt{16}*\sqrt{3}=4\sqrt{3}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-4\sqrt{3}}{2*-3}=\frac{-6-4\sqrt{3}}{-6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+4\sqrt{3}}{2*-3}=\frac{-6+4\sqrt{3}}{-6} $

See similar equations:

| 4(n+2)-2n=3 | | 1m+2=8m-4 | | 8m+4=16m-4 | | (x+4)(3x+7)(2x-2)=0 | | 188=m+80= | | 5x-8÷2=2× | | 3a-5/2=8 | | 5x-8÷2=2x | | -(3x-9)*(-8x-4)+(3x-9)*(9x+2)=-54 | | X/14+2/7=x-9/7 | | 51x^2-135x=0 | | X2-12x+30=42 | | X2-16x+86=23 | | x2+3x-6=4 | | 8^(x-1)^(x+6)=512 | | 2(x-5)^2=40 | | 1/3(x-2)^2=9 | | x^2+8x=3.5 | | -2/3y+5=4/5 | | 8n–7=100 | | n/7=3.4 | | x/1=0.9 | | (8n–7)=100 | | y+8y+16y=0 | | 14+5m=-3 | | –(q+14)=2q+1 | | Z^3-5z^2-z+26=0 | | x-9+2=7 | | 2(3x+4)+9=-13 | | x-3+4=5 | | 14+22=n^2 | | 3n^2-2n=21 |

Equations solver categories