6+(2)/(3)b=(3)/(4)b-4

Simple and best practice solution for 6+(2)/(3)b=(3)/(4)b-4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 6+(2)/(3)b=(3)/(4)b-4 equation:



6+(2)/(3)b=(3)/(4)b-4
We move all terms to the left:
6+(2)/(3)b-((3)/(4)b-4)=0
Domain of the equation: 3b!=0
b!=0/3
b!=0
b∈R
Domain of the equation: 4b-4)!=0
b∈R
We get rid of parentheses
2/3b-3/4b+4+6=0
We calculate fractions
8b/12b^2+(-9b)/12b^2+4+6=0
We add all the numbers together, and all the variables
8b/12b^2+(-9b)/12b^2+10=0
We multiply all the terms by the denominator
8b+(-9b)+10*12b^2=0
Wy multiply elements
120b^2+8b+(-9b)=0
We get rid of parentheses
120b^2+8b-9b=0
We add all the numbers together, and all the variables
120b^2-1b=0
a = 120; b = -1; c = 0;
Δ = b2-4ac
Δ = -12-4·120·0
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1}=1$
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1)-1}{2*120}=\frac{0}{240} =0 $
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1)+1}{2*120}=\frac{2}{240} =1/120 $

See similar equations:

| −5=−3x−16 | | 2=s/4−2 | | X³+8x²+34x+36=0 | | 25x2+12x=0 | | 2x+41+3x+16+7x-24=360 | | x^2-3x+2=x^2-2x+3 | | x/0+2=8 | | 5(p−88)=40 | | 11=2x=44 | | m/5+1=12 | | 12x+10=29 | | X²+20x-1120=0 | | 1/2(12x+10)=29 | | 4(3x-12)=7x-48 | | 3(2x+2)=10. | | 52=4(s−72) | | 191=72+7x | | 7x-25=3x+5 | | (x•7)-5=51 | | 3(x+4)=-2/3(9x-18) | | -1,5*2,5^(x-1)=-3*4^(x-1,5) | | 8x+20=11-31 | | 8x+-11=3x+29 | | 5d−7=68 | | 1.2x=+13=9 | | r4+16=18 | | 2x+9=1-4(2x+1) | | 8(2y-6=5(3y-7) | | m+30/7=6 | | 6(x+3)=32 | | 10=30x-20 | | 9(n−89)=18 |

Equations solver categories