6+1/3y=10+12y

Simple and best practice solution for 6+1/3y=10+12y equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 6+1/3y=10+12y equation:



6+1/3y=10+12y
We move all terms to the left:
6+1/3y-(10+12y)=0
Domain of the equation: 3y!=0
y!=0/3
y!=0
y∈R
We add all the numbers together, and all the variables
1/3y-(12y+10)+6=0
We get rid of parentheses
1/3y-12y-10+6=0
We multiply all the terms by the denominator
-12y*3y-10*3y+6*3y+1=0
Wy multiply elements
-36y^2-30y+18y+1=0
We add all the numbers together, and all the variables
-36y^2-12y+1=0
a = -36; b = -12; c = +1;
Δ = b2-4ac
Δ = -122-4·(-36)·1
Δ = 288
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{288}=\sqrt{144*2}=\sqrt{144}*\sqrt{2}=12\sqrt{2}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-12\sqrt{2}}{2*-36}=\frac{12-12\sqrt{2}}{-72} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+12\sqrt{2}}{2*-36}=\frac{12+12\sqrt{2}}{-72} $

See similar equations:

| -24-1/8p=3/8@ | | x/4=2+1/4 | | 4x^2+52=4. | | 3x-2(2x-10)=15 | | 2+n/12=1 | | -3(-8y+9)-6y=4(y-6)-7 | | 28-18=5(x-8) | | 3=k(5) | | (x+1)^3=18 | | 9x+9=8x+6 | | x/4=2(1/4) | | 42+4y-16=13y-10-3y | | 8-5w=-17 | | -8/3-6/7x=-7/2 | | 15=k3 | | 6z-15=4z+3 | | 4x^+8x-9=0 | | X+.05x=32550 | | -7+n/3=4 | | 3x+1.5=9.3 | | 2^n=12 | | 5^2x=26 | | 37=12t=85 | | 20=360x | | -4(-5x+5)-3x=2(x-4)-9 | | 1/4x+1=-9 | | 10^x=2 | | 40°1=(2x)°20° | | 4^2x=12 | | 2f/4=8 | | 4.5z=24.75 | | 3(5x+2)=47 |

Equations solver categories