6+4(x-4)=2(x-8)x=

Simple and best practice solution for 6+4(x-4)=2(x-8)x= equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 6+4(x-4)=2(x-8)x= equation:



6+4(x-4)=2(x-8)x=
We move all terms to the left:
6+4(x-4)-(2(x-8)x)=0
We multiply parentheses
4x-(2(x-8)x)-16+6=0
We calculate terms in parentheses: -(2(x-8)x), so:
2(x-8)x
We multiply parentheses
2x^2-16x
Back to the equation:
-(2x^2-16x)
We add all the numbers together, and all the variables
4x-(2x^2-16x)-10=0
We get rid of parentheses
-2x^2+4x+16x-10=0
We add all the numbers together, and all the variables
-2x^2+20x-10=0
a = -2; b = 20; c = -10;
Δ = b2-4ac
Δ = 202-4·(-2)·(-10)
Δ = 320
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{320}=\sqrt{64*5}=\sqrt{64}*\sqrt{5}=8\sqrt{5}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-8\sqrt{5}}{2*-2}=\frac{-20-8\sqrt{5}}{-4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+8\sqrt{5}}{2*-2}=\frac{-20+8\sqrt{5}}{-4} $

See similar equations:

| 4(6x+8=248 | | 47=2(w–1)+5w | | x+15=2(-2x+10) | | w+8.2=11 | | 0.4x+x=20000 | | 150x-9=135x-6 | | z=2(4z-28) | | 18x-2=17x-3 | | 32=r+16 | | d-57.65=613.1 | | y-19=35 | | -3n-2(n-8)=41 | | 2-4x=0.5 | | 7s=2(6s-25) | | 2x-73=71 | | 2(x-8)=3(x-8) | | -t+63=2t | | 8v+11=8v+11 | | 4m+5=25 | | 2(x-6)=3(x-8) | | -6(x-5)=-2x+34 | | -5p+67=2(3p+28) | | 4x-6+3x=2 | | 11p+20=2(2p+24) | | 14w-30=2(-2w+39) | | 15x−53=5x+4 | | x^2-9x+18=2x+8 | | 3y-8=5y+2 | | 2x+3(6x-1)=7 | | 9-8n=-6n-9 | | 65+(4x-3)=180 | | p+57=2(-2p+31) |

Equations solver categories