6+4/5(b)=9/10(b)

Simple and best practice solution for 6+4/5(b)=9/10(b) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 6+4/5(b)=9/10(b) equation:



6+4/5(b)=9/10(b)
We move all terms to the left:
6+4/5(b)-(9/10(b))=0
Domain of the equation: 5b!=0
b!=0/5
b!=0
b∈R
Domain of the equation: 10b)!=0
b!=0/1
b!=0
b∈R
We add all the numbers together, and all the variables
4/5b-(+9/10b)+6=0
We get rid of parentheses
4/5b-9/10b+6=0
We calculate fractions
40b/50b^2+(-45b)/50b^2+6=0
We multiply all the terms by the denominator
40b+(-45b)+6*50b^2=0
Wy multiply elements
300b^2+40b+(-45b)=0
We get rid of parentheses
300b^2+40b-45b=0
We add all the numbers together, and all the variables
300b^2-5b=0
a = 300; b = -5; c = 0;
Δ = b2-4ac
Δ = -52-4·300·0
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{25}=5$
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-5}{2*300}=\frac{0}{600} =0 $
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+5}{2*300}=\frac{10}{600} =1/60 $

See similar equations:

| (3f+1)/4=(3+2f)/2 | | 3(x+2)+8=35 | | 864=6j | | 18u+(-12u)-11u-(-16u)-13u=8 | | 9w=171 | | 17b+5b-3b-10b=18 | | q/10=3 | | 11/16x=41/2 | | -3q+-3=-18 | | x+x10+2x-10=180 | | 1y=1y+1 | | 11/16x=51/2 | | 7/6d+4/3=-13 | | -(-7y-11)=12y-11-5y | | -n+7=-12 | | 1/5n-6=98 | | 4.5x-3=2.5x-4 | | 6h-3h=9 | | 15p+19=4(3p+10) | | -(3-6h)=6h+5 | | -(-7y-11=12y-11-5y | | 10=3k-4 | | r12=13 | | 3x2-36x+180=0 | | 6x+54=2x+2 | | 2z-2z+5z=5 | | (2/3)x=1.2 | | -213+x=-238 | | 50+30p=250+10 | | 4(3h-2)=88 | | -10+2t=-2 | | 4(3h-2)=8 |

Equations solver categories