6+4x+7x=3x(6x-12)-4(x-6)

Simple and best practice solution for 6+4x+7x=3x(6x-12)-4(x-6) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 6+4x+7x=3x(6x-12)-4(x-6) equation:



6+4x+7x=3x(6x-12)-4(x-6)
We move all terms to the left:
6+4x+7x-(3x(6x-12)-4(x-6))=0
We add all the numbers together, and all the variables
11x-(3x(6x-12)-4(x-6))+6=0
We calculate terms in parentheses: -(3x(6x-12)-4(x-6)), so:
3x(6x-12)-4(x-6)
We multiply parentheses
18x^2-36x-4x+24
We add all the numbers together, and all the variables
18x^2-40x+24
Back to the equation:
-(18x^2-40x+24)
We get rid of parentheses
-18x^2+11x+40x-24+6=0
We add all the numbers together, and all the variables
-18x^2+51x-18=0
a = -18; b = 51; c = -18;
Δ = b2-4ac
Δ = 512-4·(-18)·(-18)
Δ = 1305
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1305}=\sqrt{9*145}=\sqrt{9}*\sqrt{145}=3\sqrt{145}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(51)-3\sqrt{145}}{2*-18}=\frac{-51-3\sqrt{145}}{-36} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(51)+3\sqrt{145}}{2*-18}=\frac{-51+3\sqrt{145}}{-36} $

See similar equations:

| 2d+3(d=8 | | 7+3x-−12x=3x+1 | | 0.95x+0.05(2-x)=0.10(-17) | | 4x+5x-8=28 | | 6z+19=-8-11z+2z | | -7f+10f+4=8f+9 | | 88-3y=20 | | 2x/5-x=x/10-35/5 | | X=2L+2y | | 9x+18/11=-18 | | 24a-22=-4(1-6a)1/1 | | x2=49/841 | | (5x)+(x)=180 | | -5x-2=5x-18 | | 10-4a=2(-a+8) | | 4x^2-25x+30.94=0 | | 4n+28=6n | | 15u=8u+21 | | x2=49/729 | | 2.93+19=x | | 3b-9-8b=11-32 | | 3(2x=1)=4=10 | | 9d=81d= | | -3/5f=-15 | | x2=784 | | 10=(3.14/4)/x | | -8.8(x-3.75)=26.4 | | 9x+10=3x+34 | | x+19.00x=50 | | 9x10=3x+34 | | 5/6c=2/12 | | 6d+11=4d-7 |

Equations solver categories