6.4=(4x-9)(2x+1)

Simple and best practice solution for 6.4=(4x-9)(2x+1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 6.4=(4x-9)(2x+1) equation:



6.4=(4x-9)(2x+1)
We move all terms to the left:
6.4-((4x-9)(2x+1))=0
We multiply parentheses ..
-((+8x^2+4x-18x-9))+6.4=0
We calculate terms in parentheses: -((+8x^2+4x-18x-9)), so:
(+8x^2+4x-18x-9)
We get rid of parentheses
8x^2+4x-18x-9
We add all the numbers together, and all the variables
8x^2-14x-9
Back to the equation:
-(8x^2-14x-9)
We get rid of parentheses
-8x^2+14x+9+6.4=0
We add all the numbers together, and all the variables
-8x^2+14x+15.4=0
a = -8; b = 14; c = +15.4;
Δ = b2-4ac
Δ = 142-4·(-8)·15.4
Δ = 688.8
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-\sqrt{688.8}}{2*-8}=\frac{-14-\sqrt{688.8}}{-16} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+\sqrt{688.8}}{2*-8}=\frac{-14+\sqrt{688.8}}{-16} $

See similar equations:

| 10p-6=7p+9 | | -3x-3=3(x+3) | | 3w+5=1w+15 | | 2^x+19=49 | | I(1/2)=210(1.08^t) | | 9-(2a+6)=(-9) | | 10n-21=7n | | 12+2x=5x+18 | | 3y+6=1y | | (4x+1)(17)=76 | | X+y/4=5 | | 2x+x-17=4 | | 5p-12=3p | | (5u-6/3)=(u-3/2)+10 | | 5w=1w+20 | | 56÷n=8 | | P+5q=300(30,150) | | I(1/2)=210(1.08^x) | | -6=-1n+8-6 | | 2y-3=5- | | 12a+12=9a-13 | | 50+4y=50 | | -9=6-8m-7m | | 7-8d=-7d | | 15h+6h−20h−1=19 | | 3(b+5)+4b=29 | | 2-2a-2a=10 | | 8x-7-6=11 | | 13/2m+2=21/6 | | 7=7(4q-3) | | 0.3c-8.5=1+10.2 | | 1-5x+3=-21 |

Equations solver categories