6/(2x-4)=x-5/10

Simple and best practice solution for 6/(2x-4)=x-5/10 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 6/(2x-4)=x-5/10 equation:


D( x )

2*x-4 = 0

2*x-4 = 0

2*x-4 = 0

2*x-4 = 0 // + 4

2*x = 4 // : 2

x = 4/2

x = 2

x in (-oo:2) U (2:+oo)

6/(2*x-4) = x-(5/10) // - x-(5/10)

6/(2*x-4)-x+5/10 = 0

6/(2*x-4)-x+1/2 = 0

(2*6)/(2*(2*x-4))+(2*(-x)*(2*x-4))/(2*(2*x-4))+(1*(2*x-4))/(2*(2*x-4)) = 0

2*(-x)*(2*x-4)+1*(2*x-4)+2*6 = 0

8*x-4*x^2+2*x-4+12 = 0

10*x-4*x^2+8 = 0

10*x-4*x^2+8 = 0

2*(5*x-2*x^2+4) = 0

5*x-2*x^2+4 = 0

DELTA = 5^2-(-2*4*4)

DELTA = 57

DELTA > 0

x = (57^(1/2)-5)/(-2*2) or x = (-57^(1/2)-5)/(-2*2)

x = (57^(1/2)-5)/(-4) or x = (57^(1/2)+5)/4

2*(x-((57^(1/2)-5)/(-4)))*(x-((57^(1/2)+5)/4)) = 0

(2*(x-((57^(1/2)-5)/(-4)))*(x-((57^(1/2)+5)/4)))/(2*(2*x-4)) = 0

(2*(x-((57^(1/2)-5)/(-4)))*(x-((57^(1/2)+5)/4)))/(2*(2*x-4)) = 0 // * 2*(2*x-4)

2*(x-((57^(1/2)-5)/(-4)))*(x-((57^(1/2)+5)/4)) = 0

( 2 )

2 = 0

x belongs to the empty set

( x-((57^(1/2)+5)/4) )

x-((57^(1/2)+5)/4) = 0 // + (57^(1/2)+5)/4

x = (57^(1/2)+5)/4

( x-((57^(1/2)-5)/(-4)) )

x-((57^(1/2)-5)/(-4)) = 0 // + (57^(1/2)-5)/(-4)

x = (57^(1/2)-5)/(-4)

x in { (57^(1/2)+5)/4, (57^(1/2)-5)/(-4) }

See similar equations:

| (x+12)+5x=90 | | -3(x-7)=7(4-x)-8 | | n=0.05(30)-0.5 | | 3x+y=5y | | 3x+8+2x=35 | | 6/2(x)-4=x-5/10 | | n=0.05(20)-0.5 | | X-4=5(x-20)+1 | | 0=7*(-2+T^2)-15*T | | n=0.05(0.5)-0.5 | | 12=-8p-10+9p | | 5(y-7)+5=15 | | n=0.05(0.05)-0.5 | | (X^2-6x+8)(3x+8)=0 | | -8+3*4-12= | | -3-3(x-3)=-5(x+4)+4 | | 3g-1=9 | | -2(x-2)=7(5-x)-9 | | x=60+-0.625y | | 8x^2=63x+8 | | 3/4(x-16)=3 | | 6k-15-k=15k-9-6 | | -2_1/3-(-5) | | 5t=45t | | -16+3*4-12= | | X=47x+15 | | -1/3x-7=-9 | | 2x-x=199 | | 85=16e^2x+1 | | 2+0.5(d+10)=-8 | | 2x+5.6=12 | | 11-p=12 |

Equations solver categories